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An Inequality for Subadditive Functions on a Distributive Lattice, 
with Application to Determinantal Inequalities* 
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1. A real-valued function f defined on a lattice L will be called 

subadditive, if 

f(x) + f(Y) 3 f(X "Y) + f(x AYY) (1) 

holds for any two elements x, y of L. 

The purpose of this note is to present a new inequality for subadditive 

functions on a distributive lattice, with application to inequalities concern- 

ing principal minors of various matrices. 

2. For a square matrix A of order n and for a subset M of the set 

{I, 2,. . .> ?z}, we shall denote by A(N) the principal minor of A formed 

by the rows and columns with indices contained in CC For the empty set 

C, we define A(n) = 1. 

Let A be a square matrix of order n. If A is either a positive definite 

Hermitian matrix, or an M matrix [ll, 121 (i.e., A is of the form A = 

p1 - B, where R is a real matrix with nonnegative elements, I is the 

identity matrix, and p is a positive number greater than the absolute 

value of every eigenvalue of B), or a totally positive matrix [5, p. 851 

(i.e., a real matrix whose minors, principal or not, are all positive), it is 

known [8, p. 111; 91 that the inequality 

a4 (+4(B) 3 4 (x f-l BV (x u B) (2) 

holds for any two subsets CC, p of the set (1, 2,. ., n}. In other words, 
the function f defined by 
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f(a) = log A(a), for ccC(l,Z,. . .,Yz}, (3) 

is a subadditive function on the lattice of subsets of (1, 2, . . ., s}. 

Let A = (u,~), B = (bii) be two M matrices of order n such that 

a+ < b, for all i, j. Let 0 < t < 1 and let C = (cjj) be a real or complex 

square matrix of order n such that 

IcicI > taii + (I - W,, for all i, (4) 

lcijl < Itaij + (I - t)b,j for i # j. (5) 

From two earlier results [4, Proposition 3; 6, Theorem 41, it follows that 

the inequality 

B(afI@B(aUj?) 1-t 

B(a)W) II 
(6) 

holds for any two subsets a, /I of (1, 2, . . . , n}. Thus the function f defined 

by 

f(a) = t log A(a) + (1 - t) log B(a) - lo&(a) 1 (7) 

for a C {1,2, . . . , n} is a subadditive function on the lattice of subsets 

of the set (1, 2,. . ., PZ}. 

3. For general subadditive functions on an abstract distributive 

lattice, we gave in [7] an inequality which in the case of functions of 

type (3), yields a result stronger than Szasz’s inequality. In the following 

lines, we shall prove another inequality for subadditive functions on a 

distributive lattice. Inequality (10) below, i.e., the case 4 = 1 of (S), 

generalizes a determinantal inequality recently obtained by Carlson [3]. 

THEOREM. If f is a subadditive function defined on a distributive 

lattice L, then for any finite sequence x1, x2, . . . , xp of elements of L, we have 

zvhere 

Yk = Igi,< “_ (% A % A ’ * ’ A %,k) (l<kk$). (9) 
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Proof. Consider first the case 4 = 1. In this case, (8) becomes 

ffhenfi = 1, (10) is trivial. \2’henp = 2, (10) 

property. To prove (10) by induction on ~5, 

p > 3. Let 

Zk = V l<i,< ,..<i,<fJ-l 
(XL1 A xi* A . . * A Xii) 

Then the inductive assumption gives us 

fi-1 P-1 

(10) 

is precisely the subadditive 

we may and shall assume 

Because L is distributive, 

zk v tzk--l A x~) = Yk P<k<P 

,41so, since zk ,< zk_*, 

z, A (zk_i A x& = z, A x9 (2 < k < p - 1). 

From (13), (14), and the subadditivity of j, we have 

f(z,) + f&_-l A xp) 3 f(y,J + f(% A Xr) p<lz<p-l) 

and therefore 

P-1 P-1 

kz2 f (4 + f (21 A 4 3 kz2 /(Y,) + f (zp-, * xc). 

Combining (16) with 

f(%) + l(.q 3 f(% v $1 + f(s A 4 

and observing that zi V xc = yr, ze___, A xp = yr, we obtain 

p--1 

c f(G) + f(“p) 3 gL f(Yk). 
k=l 

(11) 

(12) 

(13) 

(14) 

( 15) 

(16) 

(17 

(18) 

Then (10) follows from (12) and (18). Inequality (8) is thus proved for 

q=l and all$al. 
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\lihen q = p, both sides of (8) are equal to f(xr A xa A. -. A x9). To 

prove (8) for the case (q, $J) with 2 < 4 < $, it suffices to show that the 

result for the cases (q,$ - 1) and (q - 1, p - 1) implies the result for 

the case (g, 9). 

Consider a fixed pair (q, ~5) with 2 < q < p. By the result for the case 

(q, $J - l), we have 

where, as before, the z,?‘s are defined by (11). If we apply the result for 

the case (4 - 1, p - 1) to the p - 1 elements xi A x0, x2 A xp, . . , AC_~ A 
xp, then since L is distributive, we get 

On the other hand, (15) gives us 

[fkk) + f(zk-, A XJj b [fbd + fh A xc) 1. (21) 

f(Yk). (24 

Then the desired inequality (8) follows from (19), (20), and (22). This 

shows that for 2 < Q < 9, the result for the case (4, p) is implied by the 

result for the cases (4, p - 1) and (4 - 1, p - 1). The theorem is thus 

proved for all (q, fi) with 1 ,< q < $. 

4. The hypothesis of the theorem is self-dual. That is, the hypothesis 

remains the same when the lattice operations V and A are interchanged. 

Therefore, under the hypothesis of the above theorem, we have also 
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where 

If the lattice L is not distributive, but the subadditive function f is 

isotone, i.e., if x >, y in L implies f(x) > f(y), then inequality (10) remains 

valid, In fact, under the new hypothesis, (16) is still true, although (13) 

has to be replaced by zg V (zk_i A X& 3 >lk. 

For a function of the type (3), the theorem takes the following form. 

Let A be a real or complex, square matrix of order n such that its principal 

minors are all positive and satisfy inequality (2). Let tcr, x2, . . , cc,, be 

subsets of the set (1, 2, . . . , n}. For 1 < K ,( p, let p, be the set of those 

indices which are contained in at least h of the sets pi, x~, . . . , ap. Then 

In particular, if for some positive integer r < p, each of the indices 

1, 2, . ., n is contained in exactly Y of the sets tci, gcz, . . ., K,,, then 

In the case q = 1, (26) was first obtained by Marcus [lo] for positive 

definite Hermitian matrices, then in [5] for M matrices and totally 

positive matrices. This was recently generalized to the case q = 1 of 

(25) by Carlson 131. 

As other examples of subadditive functions, we mention the dimension 

function on a semimodular lattice [l, p. 1001, and the upper integral 

on a locally compact space with respect to a positive measure [2, p. 1091. 
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