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An Inequality for Subadditive Functions on a Distributive Lattice,
with Application to Determinantal Inequalities*
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1. A real-valued function { defined on a lattice L will be called
subadditive, if

(%) + /() = [(xVy) + H{xAy) (1)

holds for any two elements x,y of L.

The purpose of this note is to present a new inequality for subadditive
functions on a distributive lattice, with application to inequalities concern-
ing principal minors of various matrices.

2. For a square matrix 4 of order » and for a subset a of the set
{1,2,..., n}, we shall denote by A(x) the principal minor of 4 formed
by the rows and columns with indices contained in «. For the empty set
7, we define 4() = 1.

Let 4 be a square matrix of order #. If 4 is either a positive definite
Hermitian matrix, or an M matrix [11, 12] (i.e., 4 is of the form 4 =
pl — B, where B is a real matrix with nonnegative elements, I is the
identity matrix, and p is a positive number greater than the absolute
value of every eigenvalue of B), or a totally positive matrix [8, p. 85]
(i.e., a real matrix whose minors, principal or not, are all positive), it is
known [8, p. 111; 9] that the inequality

AAB) = AN BA@EU ) (@)

holds for any two subsets o, 8 of the set {1,2,...,#}. In other words,
the function f defined by
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fle) = log A (), for «C{1,2,...,n}, 3)

is a subadditive function on the lattice of subsets of {1,2,..., n}.

Let A = (a;), B = (b;) be two M matrices of order # such that
a; < by foralls,7. Let 0 ¢ <1 and let C = (c;) be a real or complex
square matrix of order # such that

leis| = tay; + (L — 0)b;; for all 1, ()

lei| < ftay; + (1 — 0)byy] for ¢ 7. {5)
From two earlier results [4, Proposition 3; 6, Theorem 47, it follows that

the inequality

‘EEE@EBPM ;Pﬂﬁ}&&g@qTBwntwumr% o

CCl) A()A(B) B)B(f)

holds for any two subsets «, § of {1, 2, ..., #n}. Thus the function / defined
by

flo) =tlog A(e) + (1 — ¢) log B(a) — log|C(a)| (7)

for « € {1,2,..., n} is a subadditive function on the lattice of subsets
of the set {1,2,..., n}.

3. For general subadditive functions on an abstract distributive
lattice, we gave in [7] an inequality which in the case of functions of
type (3), vields a result stronger than Szdsz’s inequality. In the following
lines, we shall prove another inequality for subadditive functions on a
distributive lattice. Inequality (10) below, i.e., the case ¢ = 1 of (8),
generalizes a determinantal inequality recently obtained by Carlson [3].

THEOREM. If [ is a subadditive function defined on a distributive

lattice L, then for any finite sequence x,, %,, . . ., %, of elements of L, we have
v fk—1
Z f(xil/\xiz/\”'/\xiq)>z 1 ) 1<y,
I T <ig<p =g \d —
(8)
where
Y= \Y/ (i, Axy Ao Axy) (I<<E<P). 9)

1< <P
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Proof. Consider first the case ¢ = 1. In this case, (8) becomes

P P
kZ ) = ;;1 i) (=1 (10)

When p = 1, (10) is trivial. When p == 2, (10) 1s precisely the subadditive
property. To prove (10) by induction on p, we may and shall assume
b =3, Let

2y = V (xileigA"‘Axik) A<hkp—1). (11)

Ty < - - <ipp—1

Then the inductive assumption gives us

p—1 p—1
> Ha = 2 ). (12)
k=1 k=1
Because L is distributive,
5V (2 Ax,) =y, 2<LEep—1). (13)
Also, since z, < z,_1,
A (7 A xy) = 2, A %, 2<<hp —1). (14)

From (13), (14), and the subadditivity of /, we have

fa) + g Axy) Z 1) + flaAy)  E<E<p—1)  (15)

and therefore

2 K + H A ) 2 () + H2p_1 A ). (16)
Combining (16) with
1z + [(xp) 2 [V 2,) + [l A ) (17)

and observing that z; V x, = y,, 2, A x, = y,, we obtain
4
Z Hzp) + f z (18)
k=1 k=

Then (10) follows from (12) and (18). Inequality (8) is thus proved for
g=1and all p =1
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“Axg). To

36
When ¢ = p, both sides of (8) are equal to j{x; A x, A
prove (8) for the case (g, p) with 2 <{ g < p, it suffices to show that the

result for the cases (g,» — 1) and (g — 1, p — 1) implies the result for
< g < p. By the result for the case

the case (g, p).
Consider a fixed pair (g, p) with 2 <C
(g.» — 1), we have
. Pk — 1\,
S i An A A > 2( Jre. s
) q F=a\d — 1
If we apply the result for
Xp_y A

p
<ig=<p—1

Loty <

where, as before, the z,’s are defined by (11)
the case (¢ — 1, p — 1) to the p — 1 elements x; A %, x, A 1,

)

v,, then since L is distributive, we get
J fx, Ax, A L Ax) =
Vi o .(]_1§p“1 ( 1 2 pl = it qg — 2
(20)
On the other hand, (15) gives us
% k— S k=1 ,
. e + s A x> 'S . 1) ) + fec Al (21)
l:q k=q
ko — 1) k— 1\
As (g B 1) = (s N i) (t[ _ 2) for k= gandz,_, A x, = y,, (21) may
be written »
ok —1 - —1 bk —1 ,
(f o)+ 2 (2 ) enn) = > TEVRE
h=g—1 k=g
This

=)

k=gq
T'hen the desired inequality (8) follows from (19), (20), and (
shows that for 2 <{ ¢ < p, the result for the case (g, ) is implied by the
, . The theorem is thus

result for the cases (¢, — 1) and (g — 1,p — 1)
proved for all (g, ) with 1 <{gq < .
The hypothesis of the theorem is self-dual. That is, the hypothesis

remains the same when the lattice operations V and A are interchanged

4. T
Therefore, under the hypothesis of the above theorem, we have also
~ ) Lo (k—1
fx, Va, Ve Z 1 () I<g<p),
i < o i =¢\4 —

Linear Algebva and Its Applications 1, 33—-38 (1968)



AN INEQUALITY FOR SUBADDITIVE FUNCTIONS 37

where

ty, = A (B VoV Vy)  (I<k<p). (24)

Tsiiy < v e <lpp

If the lattice L is not distributive, but the subadditive function f is
isotone, 1.e., if x 2= vy in L implies f(x) == f(v), then inequality (10) remains
valid. In fact, under the new hypothesis, (15) is still true, although (13)
has to be replaced by 2z, V (z, | A x,) = v,

For a function of the type (3), the theorem takes the following form.
Let A be a real or complex, square matrix of order # such that its principal
minors are all positive and satisfy inequality (2). Let e, %, ..., «, be
subsets of the set {1, 2,..., n}. For1 <k < p, let f, be the set of those
indices which are contained in at least % of the sets «;, o,, ..., a,. Then

» k-1
H A(“i,”“i,”"'”“i)?ﬂ [A(ﬁk”(q_l) I<g<p).

1gi,<~~<iq<p k=q

(25)

In particular, if for some positive integer 7 < p, each of the indices
1,2,...,n is contained in exactly » of the sets oy, oy, . . ., %, then

) H pA(ocilﬂocizﬂ---ﬂoz{q)>(detA)(<1) 1<q<r). (26)

In the case ¢ = 1, (26) was first obtained by Marcus [10] for positive
definite Hermitian matrices, then in [5] for M matrices and totally
positive matrices. This was recently generalized to the case g =1 of
{25) by Carlson [3].

As other examples of subadditive functions, we mention the dimension
function on a semimodular lattice {1, p. 100], and the upper integral
on a locally compact space with respect to a positive measure [2, p. 109].

REFERENCES

1 G. Birkhoff, Lattice Theory, dmer. Math. Soc. Collog. Publ. XXV, New York,
1948.

N. Bourbaki, [#utégration, Chap. I-1V, Hermann, Paris, 1952,

D. Carlson, Note on some determinantal inequalities, to appear.

K. Fan, Note on M-matrices, Quart. [. Math. Oxford (2), 11(1960), 43-49.
K. Fan, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg 29(1966),
185-196.

S W

Lineay Algebva and Its Applications 1, 33 —38 (1968)



38 K. FAN

6 K. Fan, Inequalities for the sum of two M-matrices, Inequalities: Proceedings
of a Symposium (O. Shisha, ed.), Academic Press, New York, 1967.

7 K. Fan, Subadditive functions on a distributive lattice and an extension of
Szasz's inequality, [. Math. Analysis Appl. 18(1967), 262-268.

8 F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und
kleine Schwingungen wmechawnischey Systeme, Akademie-Verlag, Berlin, 1960.

9 D. M. Koteljanski 1VJ The theory of nonnegative and oscillating matrices (Russian),
Ukrain. Mat. z. 2(1950), 94-101; English transl.: Awmeyr. Math. Soc. Tvansl. (2),
27(1963), 1-8.

10 M. Marcus, Matrix applications of a quadratic identity for decomposable sym-
metrized tensors, Bull. Awmer. Math. Soc. 71(1963), 360-364.

11 A. M. Ostrowski, Uber die Determinanten mit {iberwiegender Hauptdiagonale,
Comment. Math. Helvetict 10(1937), 69-96.

12 A, M. Ostrowski, Determinanten mit iiberwiegender Hauptdiagonale und die
absolute Konvergenz von linearen Iterationsprozessen, Comment. Math. Helvetici
30(1956), 175-210.

Received May 19, 1967

Lineay Algebva and lts Applications 1, 33—38 (1968)



