An Inequality for Subadditive Functions on a Distributive Lattice, with Application to Determinantal Inequalities*

KY FAN
University of California
Santa Barbara, California

1. A real-valued function f defined on a lattice L will be called subadditive, if

$$
\begin{equation*}
f(x)+f(y) \geqslant f(x \vee y)+f(x \wedge y) \tag{1}
\end{equation*}
$$

holds for any two elements x, y of L.
The purpose of this note is to present a new inequality for subadditive functions on a distributive lattice, with application to inequalities concerning principal minors of various matrices.
2. For a square matrix A of order n and for a subset α of the set $\{1,2, \ldots, n\}$, we shall denote by $A(\alpha)$ the principal minor of A formed by the rows and columns with indices contained in α. For the empty set \varnothing, we define $A(\varnothing)=1$.

Let A be a square matrix of order n. If A is either a positive definite Hermitian matrix, or an M matrix [11, 12] (i.e., A is of the form $A=$ $\rho I-B$, where B is a real matrix with nonnegative elements, I is the identity matrix, and ρ is a positive number greater than the absolute value of every eigenvalue of B), or a totally positive matrix $[8, \mathrm{p} .85]$ (i.e., a real matrix whose minors, principal or not, are all positive), it is knowil [8, p. 111; 9] that the inequality

$$
\begin{equation*}
A(\alpha) A(\beta) \geqslant A(\alpha \cap \beta) A(\alpha \cup \beta) \tag{2}
\end{equation*}
$$

holds for any two subsets α, β of the set $\{1,2, \ldots, n\}$. In other words, the function f defined by

[^0]Linear Algebra and Its Applications 1, 33-38 (1968)
Copyright (C) 1968 by American Elsevier Publishing Company, Inc.

$$
\begin{equation*}
f(\alpha)=\log A(\alpha), \quad \text { for } \quad \alpha \subset\{1,2, \ldots, n\} \tag{3}
\end{equation*}
$$

is a subadditive function on the lattice of subsets of $\{1,2, \ldots, n\}$.
Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ be two M matrices of order n such that $a_{i j} \leqslant b_{i j}$ for all i, j. Let $0 \leqslant t \leqslant 1$ and let $C=\left(c_{i j}\right)$ be a real or complex square matrix of order n such that

$$
\begin{array}{ll}
\left|c_{i i}\right| \geqslant t a_{i i}+(1-t) b_{i i} & \text { for all } i, \\
\left|c_{i j}\right| \leqslant\left|t a_{i j}+(1-t) b_{i j}\right| & \text { for } i \neq j . \tag{5}
\end{array}
$$

From two earlier results [4, Proposition 3; 6, Theorem 4], it follows that the inequality

$$
\begin{equation*}
\left|\frac{C(\alpha \cap \beta) C(\alpha \cup \beta)}{C(\alpha) C(\beta)}\right| \geqslant\left[\frac{A(\alpha \cap \beta) A(\alpha \cup \beta)}{A(\alpha) A(\beta)}\right]^{t}\left[\frac{B(\alpha \cap \beta) B(\alpha \cup \beta)}{B(\alpha) B(\beta)}\right]^{1-t} \tag{6}
\end{equation*}
$$

holds for any two subsets α, β of $\{1,2, \ldots, n\}$. Thus the function f defined by

$$
\begin{equation*}
f(\alpha)=t \log A(\alpha)+(1-t) \log B(\alpha)-\log |C(\alpha)| \tag{7}
\end{equation*}
$$

for $\alpha \subset\{1,2, \ldots, n\}$ is a subadditive function on the lattice of subsets of the set $\{1,2, \ldots, n\}$.
3. For general subadditive functions on an abstract distributive lattice, we gave in [7] an inequality which in the case of functions of type (3), yields a result stronger than Szász's inequality. In the following lines, we shall prove another inequality for subadditive functions on a distributive lattice. Inequality (10) below, i.e., the case $q=1$ of (8), generalizes a determinantal inequality recently obtained by Carlson [3].

Theorem. If f is a subadditive function defined on a distributive lattice L, then for any finite sequence $x_{1}, x_{2}, \ldots, x_{p}$ of elements of L, we have

$$
\begin{equation*}
\sum_{1 \leqslant i_{1}<\cdots<i_{q} \leqslant p} f\left(x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{q}}\right) \geqslant \sum_{k=q}^{p}\binom{k-1}{q-1} f\left(y_{k}\right) \quad(1 \leqslant q \leqslant p) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{k}=\underset{1 \leqslant i_{1}<\cdots<i_{k} \leqslant p}{ }\left(x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}\right) \quad(\mathbf{1} \leqslant k \leqslant p) \tag{9}
\end{equation*}
$$

Linear Algebra and Its Applications 1, 33-38 (1968)

Proof. Consider first the case $q=1$. In this case, (8) becomes

$$
\begin{equation*}
\sum_{k=1}^{p} f\left(x_{k}\right) \geqslant \sum_{k=1}^{p} f\left(y_{k}\right) \quad(p \geqslant 1) \tag{10}
\end{equation*}
$$

When $p-1,(10)$ is trivial. When $p-2,(10)$ is precisely the subadditive property. To prove (10) by induction on p, we may and shall assume $p \geqslant 3$. Let

$$
\begin{equation*}
z_{k}=\bigvee_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant p-1}\left(x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}\right) \quad(1 \leqslant k \leqslant p-1) \tag{11}
\end{equation*}
$$

Then the inductive assumption gives us

$$
\begin{equation*}
\sum_{k=1}^{p-1} f\left(x_{k}\right) \geqslant \sum_{k=1}^{p-1} f\left(z_{k}\right) \tag{12}
\end{equation*}
$$

Because L is distributive,

$$
\begin{equation*}
z_{k} \vee\left(z_{k-1} \wedge x_{p}\right)=y_{k} \quad(2 \leqslant k \leqslant p-1) \tag{13}
\end{equation*}
$$

Also, since $z_{k} \leqslant z_{k-1}$,

$$
\begin{equation*}
z_{k} \wedge\left(z_{k-1} \wedge x_{p}\right)=z_{k} \wedge x_{p} \quad(2 \leqslant k \leqslant p-1) \tag{14}
\end{equation*}
$$

From (13), (14), and the subadditivity of j, we have

$$
\begin{equation*}
f\left(z_{k}\right)+f\left(z_{k-1} \wedge x_{p}\right) \geqslant f\left(y_{k}\right)+f\left(z_{k} \wedge x_{p}\right) \quad(2 \leqslant k \leqslant p-1) \tag{15}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sum_{k=2}^{p-1} f\left(z_{k}\right)+f\left(z_{1} \wedge x_{p}\right) \geqslant \sum_{k=2}^{p-1} f\left(y_{k}\right)+f\left(z_{p-1} \wedge x_{p}\right) . \tag{16}
\end{equation*}
$$

Combining (16) with

$$
\begin{equation*}
f\left(z_{1}\right)+f\left(x_{p}\right) \geqslant f\left(z_{1} \vee x_{p}\right)+f\left(z_{1} \wedge x_{p}\right) \tag{17}
\end{equation*}
$$

and observing that $z_{1} \vee x_{p}=y_{1}, z_{p-1} \wedge x_{p}=y_{p}$, we obtain

$$
\begin{equation*}
\sum_{k=1}^{p-1} f\left(z_{k}\right)+f\left(x_{p}\right) \geqslant \sum_{k=1}^{p} f\left(y_{k}\right) . \tag{18}
\end{equation*}
$$

Then (10) follows from (12) and (18). Inequality (8) is thus proved for $q=1$ and all $p \geqslant 1$.

When $q=p$, both sides of (8) are equal to $f\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{p}\right)$. To prove (8) for the case (q, p) with $2 \leqslant q<p$, it suffices to show that the result for the cases $(q, p-1)$ and $(q-1, p-1)$ implies the result for the case (q, p).

Consider a fixed pair (q, p) with $2 \leqslant q<p$. By the result for the case $(q, p-1)$, we have

$$
\begin{equation*}
\sum_{1 \leqslant i_{1} \leqslant \cdots<i_{q} \leqslant p-1} j\left(x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{q}}\right) \geqslant \sum_{k=q}^{p-1}\binom{k-1}{q-1} f\left(z_{k}\right) \tag{19}
\end{equation*}
$$

where, as before, the z_{k} 's are defined by (11). If we apply the result for the case $(q-1, p-1)$ to the $p-1$ elements $x_{1} \wedge x_{p}, x_{2} \wedge x_{p}, \ldots, x_{p-1} \wedge$ x_{p}, then since L is distributive, we get

$$
\begin{equation*}
\left.1 \leqslant i_{1}<\cdots<i_{q-1} \leqslant p-1<x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{q-1}} \wedge x_{p}\right) \geqslant \sum_{k=q-1}^{p-1}\binom{k-1}{q-2} /\left(z_{k} \wedge x_{p}\right) \tag{20}
\end{equation*}
$$

On the other hand, (15) gives us
$\sum_{k=q}^{p-1}\binom{k-1}{q-1}\left[f\left(z_{k}\right)+f\left(z_{k-1} \wedge x_{p}\right)\right] \geqslant \sum_{k=q}^{p-1}\binom{k-1}{q-1}\left[f\left(y_{k}\right)+f\left(z_{k} \wedge x_{p}\right)\right]$.
$\operatorname{As}\binom{k}{q-1}=\binom{k-1}{q-1}+\binom{k-1}{q-2}$ for $k \geqslant q$ and $z_{p-1} \wedge x_{p}=y_{p},(21)$ may
be written

$$
\begin{equation*}
\sum_{k=q}^{p-1}\binom{k-1}{q-1} f\left(z_{k}\right)+\sum_{k=q-1}^{p-1}\binom{k-1}{q-2} f\left(z_{k} \wedge x_{p}\right) \geqslant \sum_{k=q}^{p}\binom{k-1}{q-1} f\left(y_{k}\right) . \tag{22}
\end{equation*}
$$

Then the desired inequality (8) follows from (19), (20), and (22). This shows that for $2 \leqslant q<p$, the result for the case (q, p) is implied by the result for the cases $(q, p-1)$ and $(q-1, p-1)$. The theorem is thus proved for all (q, p) with $1 \leqslant q \leqslant p$.
4. The hypothesis of the theorem is self-dual. That is, the hypothesis remains the same when the lattice operations V and Λ are interchanged. Therefore, under the hypothesis of the above theorem, we have also

$$
\begin{equation*}
\sum_{1 \leqslant i_{1}<\cdots<i_{q} \leqslant p} j\left(x_{i_{1}} \vee x_{i_{2}} \vee \cdots \vee x_{i_{q}}\right) \geqslant \sum_{k=q}^{p}\binom{k-1}{q-1} f\left(u_{k}\right) \quad(1 \leqslant q \leqslant p) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{k}=\bigwedge_{1 \leqslant i,<}\left(x_{i_{1}} \vee x_{i_{2}} \vee \cdots \vee x_{i_{k}}\right) \quad(\mathbf{l} \leqslant k \leqslant p) \tag{24}
\end{equation*}
$$

If the lattice L is not distributive, but the subadditive function f is isotone, i.e., if $x \geqslant y$ in L implies $f(x) \geqslant f(y)$, then inequality (10) remains valid. In fact, under the new hypothesis, (15) is still true, although (13) has to be replaced by $z_{k} \vee\left(z_{k-1} \wedge x_{p}\right) \geqslant y_{k}$.

For a function of the type (3), the theorem takes the following form. Let A be a real or complex, square matrix of order n such that its principal minors are all positive and satisfy inequality (2). Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ be subsets of the set $\{\mathbf{1}, \mathbf{2}, \ldots, n\}$. For $1 \leqslant k \leqslant p$, let β_{k} be the set of those indices which are contained in at least k of the sets $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$. Then

$$
\begin{equation*}
\prod_{1 \leqslant i_{1}<\cdots<i_{q} \leqslant p} A\left(\alpha_{i_{1}} \cap \alpha_{i_{2}} \cap \cdots \cap \alpha_{i_{q}}\right) \geqslant \prod_{k=q}^{p}\left[A\left(\beta_{k}\right)\right]^{\}_{q-1}^{k-1}\right)} \quad(1 \leqslant q \leqslant p) . \tag{25}
\end{equation*}
$$

In particular, if for some positive integer $r \leqslant p$, each of the indices $1,2, \ldots, n$ is contained in exactly r of the sets $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$, then

$$
\begin{equation*}
\prod_{1 \leqslant i_{1}<\cdots<i_{q} \leqslant p} A\left(\alpha_{i_{1}} \cap \alpha_{i_{2}} \cap \cdots \cap_{\alpha_{i_{q}}}\right) \geqslant(\operatorname{det} A)\binom{r}{q} \quad(1 \leqslant q \leqslant r) \tag{26}
\end{equation*}
$$

In the case $q=1$, (26) was first obtained by Marcus [10] for positive definite Hermitian matrices, then in [5] for M matrices and totally positive matrices. This was recently generalized to the case $q=1$ of (25) by Carlson [3].

As other examples of subadditive functions, we mention the dimension function on a semimodular lattice [1, p. 100], and the upper integral on a locally compact space with respect to a positive measure [2, p. 109].

REFERENCES

1 G. Birkhoff, lattice Theory, Amer. Math. Soc. Colloq. I'ubl. XXV, New York, 1948.

2 N. Bourbaki, Intégration, Chap. I-IV, Hermann, Paris, 1952.
3 1). Carlson, Note on some determinantal inequalities, to appear.
4 K. Fan, Note on M-matrices, Quart. /. Math. Oxford (2), 11(1960), 43-49.
\therefore K. Fan, Some matrix inequalities, Abh. Math. Sem. Vniv. Hamburg $\mathbf{9 9}(\mathbf{1 9 6 6})$, 185-196.

6 K . Fan, Inequalities for the sum of two M-matrices, Inequalities: Proceedings of a Symposium (O. Shisha, ed.), Academic Press, New York, 1967.
7 K. Fan, Subadditive functions on a distributive lattice and an extension of Szász's inequality, J. Math. Analysis Appl. 18(1967), 262--268.
8 F. R. Gantmacher and M. G. Krein, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Akademie-Verlag, Berlin, 1960.
9 D. M. Koteljanskiľ, The theory of nonnegative and oscillating matrices (Russian), Ukrain. Mat. Ž. $\mathbf{Q}(1950), 94-101$; English transl.: Amer. Math. Soc. Transl. (2), 27(1963), 1-8.
10 M . Marcus, Matrix applications of a quadratic identity for decomposable symmetrized tensors, Bull. Amev. Math. Soc. 71(1965), 360-364.
11 A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helvetici 10(1937), 69-96.
12 A. M. Ostrowski, Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen, Comment. Math. Helvetici 30(1956), 175-210.

Received May 19, 1967

[^0]: * Work supported in part by the National Science Foundation, Grant GP-5578.

